2021年1月30日星期六

ConcurrentHashMap详解

原文链 id="concurrenthashmap详解">ConcurrentHashMap详解

JDK7

Segment

在jdk8之前concurrentHashMap使用该对象进行分段加锁,降低了锁的粒度,使得并发效率提高,Segment本身也相当于一个HashMap,Segment包含一个HashEntry数组,数组中每个HashEntry既是一个键值对,又是一个链表的头结点

get方法

  • 根据key做hash运算,得到hash值
  • 通过hash值,定位到对应的segment对象
  • 再次通过hash值,定位到segment当中数组的具体位置

put方法

  • 根据key做hash运算,得到hash值
  • 通过hash值,定位到对应的segment对象
  • 获取可重入锁
  • 再次通过hash值,定位到segment当中数组的具体位置
  • 插入或覆盖hashEntry对象
  • 释放锁

但是使用这种方式实现需要进行两次hash操作,第一次hash操作找到对应的segment,第二次hash操作定位到元素所在链表的头部

JDK8

在jdk8的时候参考了HashMap的设计,采用了数组+链表+红黑树的方式,内部大量采用CAS操作,舍弃了分段锁的思想

CAS

CAS是compare and swap的缩写,即我们所说的比较交换,CAS属于乐观锁。

CAS包含三个操作数,---内存中的值(V),预期原值(A),新值(B) 如果内存中的值和A的值一样,就可以将内存中的值更新为B。CAS通过无限循环来获取数据,一直到V和A一致为止

乐观锁

乐观锁会很乐观的认为不会出现并发问题,所以采用无锁的机制来进行处理,比如通过给记录加version来获取数据,性能比悲观锁要高

悲观锁

悲观锁会很悲观的认为肯定会出现并发问题,所以会将资源锁住,该资源只能有一个线程进行操作,只有前一个获得锁的线程释放锁之后,下一个线程才可以访问

源码分析

重要变量
// 表示整个hash表,初始化阶段是在第一次插入的时候,容量总是2的次幂transient volatile Node<K,V>[] table;// 下一个使用的表 只有在扩容的时候非空,其他情况都是nullprivate transient volatile Node<K,V>[] nextTable;/** * Base counter value, used mainly when there is no contention, * but also as a fallback during table initialization * races. Updated via CAS. */private transient volatile long baseCount;// 用于初始化和扩容控制// 0:默认值// -1:正在初始化// 大于0:为hash表的阈值// 小于-1:有多个线程在进行扩容 该值为 -(1+正在扩容的线程数)private transient volatile int sizeCtl;/** * The next table index (plus one) to split while resizing. */private transient volatile int transferIndex;/** * Spinlock (locked via CAS) used when resizing and/or creating CounterCells. */private transient volatile int cellsBusy;/** * Table of counter cells. When non-null, size is a power of 2. */private transient volatile CounterCell[] counterCells;// viewsprivate transient KeySetView<K,V> keySet;private transient ValuesView<K,V> values;private transient EntrySetView<K,V> entrySet;
构造函数
/** * Creates a new, empty map with the default initial table size (16). */public ConcurrentHashMap() {}/** * Creates a new, empty map with an initial table size * accommodating the specified number of elements without the need * to dynamically resize. * * @param initialCapacity The implementation performs internal * sizing to accommodate this many elements. * @throws IllegalArgumentException if the initial capacity of * elements is negative */public ConcurrentHashMap(int initialCapacity) { if (initialCapacity < 0)  throw new IllegalArgumentException(); int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?    MAXIMUM_CAPACITY :    tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); this.sizeCtl = cap;}/** * Creates a new map with the same mappings as the given map. * * @param m the map */public ConcurrentHashMap(Map<? extends K, ? extends V> m) { this.sizeCtl = DEFAULT_CAPACITY; putAll(m);}/** * Creates a new, empty map with an initial table size based on * the given number of elements ({@code initialCapacity}) and * initial table density ({@code loadFactor}). * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements, * given the specified load factor. * @param loadFactor the load factor (table density) for * establishing the initial table size * @throws IllegalArgumentException if the initial capacity of * elements is negative or the load factor is nonpositive * * @since 1.6 */public ConcurrentHashMap(int initialCapacity, float loadFactor) { this(initialCapacity, loadFactor, 1);}/** * Creates a new, empty map with an initial table size based on * the given number of elements ({@code initialCapacity}), table * density ({@code loadFactor}), and number of concurrently * updating threads ({@code concurrencyLevel}). * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements, * given the specified load factor. * @param loadFactor the load factor (table density) for * establishing the initial table size * @param concurrencyLevel the estimated number of concurrently * updating threads. The implementation may use this value as * a sizing hint. * @throws IllegalArgumentException if the initial capacity is * negative or the load factor or concurrencyLevel are * nonpositive */public ConcurrentHashMap(int initialCapacity,       float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)  throw new IllegalArgumentException(); if (initialCapacity < concurrencyLevel) // Use at least as many bins  initialCapacity = concurrencyLevel; // as estimated threads long size = (long)(1.0 + (long)initialCapacity / loadFactor); int cap = (size >= (long)MAXIMUM_CAPACITY) ?  MAXIMUM_CAPACITY : tableSizeFor((int)size); this.sizeCtl = cap;}
重要方法
put方法

ConcurrentHashMap是如何保证在插入的时候线程安全的呢

public V put(K key, V value) { return putVal(key, value, false);}
final V putVal(K key, V value, boolean onlyIfAbsent) { 	// ConcurrentHashMap不允许key和value为null if (key == null || value == null) throw new NullPointerException(); 	// 计算hash值 int hash = spread(key.hashCode()); int binCount = 0; for (Node<K,V>[] tab = table;;) {  Node<K,V> f; int n, i, fh;  	// tab为null,哈希表还没有初始化,进行初始化哈希表  if (tab == null || (n = tab.length) == 0)   tab = initTable();  	// 该索引位置为null,表示还没有元素  else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {   	// 使用CAS的方式添加节点   if (casTabAt(tab, i, null,       new Node<K,V>(hash, key, value, null)))    break;     // no lock when adding to empty bin  }  	// 节点的hash值为-1,表示该哈希表正在扩容  else if ((fh = f.hash) == MOVED)   tab = helpTransfer(tab, f);  else {   V oldVal = null;   	// 对头节点加锁   synchronized (f) {    	// 再次判断一下该节点是否为目标索引位置的头节点,防止期间被修改    if (tabAt(tab, i) == f) {     	// 表示是普通的链表     if (fh >= 0) {      binCount = 1;      for (Node<K,V> e = f;; ++binCount) {       K ek;       if (e.hash == hash &&        ((ek = e.key) == key ||         (ek != null && key.equals(ek)))) {        oldVal = e.val;        if (!onlyIfAbsent)         e.val = value;        break;       }       Node<K,V> pred = e;       if ((e = e.next) == null) {        pred.next = new Node<K,V>(hash, key,               value, null);        break;       }      }     }     	// 红黑树 TreeBin的hash值为TREEBIN,是-2     else if (f instanceof TreeBin) {      Node<K,V> p;      binCount = 2;      if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,              value)) != null) {       oldVal = p.val;       if (!onlyIfAbsent)        p.val = value;      }     }    }   }   	// 可以看一下上述的赋值流程   	// 默认初始值是0   	// 链表时为1 在遍历时进行累加,直到找到所要添加的位置为止   	// 红黑树时为2   if (binCount != 0) {    	// 链表的长度是否达到8 达到8转为红黑树    if (binCount >= TREEIFY_THRESHOLD)     treeifyBin(tab, i);    	// oldVal不为null,表示只是对key的值进行的修改,没有添加元素,直接返回即可    if (oldVal != null)     return oldVal;    break;   }  } } 	//  addCount(1L, binCount); return null;}

哈希函数根据hashCode计算出哈希值,这里的hash值与HashMap的计算方式稍微有点不同,在低十六位异或高十六位之后还需要与HASH_BITS在进行与运算,HASH_BITS的值是0x7fffffff,转为二进制是31个1,进行与运算是为了保证得到的hash值为正数。

ConcurrentHashMap中hash值为负数包含有其他含义,-1表示为ForwardingNode节点,-2表示为TreeBin节点

static final int spread(int h) { 	// (h ^ (h >>> 16)与hashMap相同 	// HASH_BITS进行与运算 return (h ^ (h >>> 16)) & HASH_BITS;}

初始化hash表的操作

private final Node<K,V>[] initTable() { Node<K,V>[] tab; int sc; 	// hash表为null时才需要进行初始化 while ((tab = table) == null || tab.length == 0) {  	// sizeCtl小于0表示有其他线程在进行初始化操作了  if ((sc = sizeCtl) < 0)   Thread.yield(); // lost initialization race; just spin  	// 将SIZECTL设为-1,表示该线程要开始初始化表了  else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {   try {    if ((tab = table) == null || tab.length == 0) {     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;     @SuppressWarnings("unchecked")     Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];     table = tab = nt;     	// n右移两位 表示1/4n n-1/4n为3/4n 即为n*0.75     sc = n - (n >>> 2);    }   } finally {    sizeCtl = sc;   }   break;  } } return tab;}
private final void addCount(long x, int check) { CounterCell[] as; long b, s; if ((as = counterCells) != null ||  !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {  CounterCell a; long v; int m;  boolean uncontended = true;  if (as == null || (m = as.length - 1) < 0 ||   (a = as[ThreadLocalRandom.getProbe() & m]) == null ||   !(uncontended =    U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {   fullAddCount(x, uncontended);   return;  }  if (check <= 1)   return;  s = sumCount(); } if (check >= 0) {  Node<K,V>[] tab, nt; int n, sc;  while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&    (n = tab.length) < MAXIMUM_CAPACITY) {   int rs = resizeStamp(n);   if (sc < 0) {    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||     sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||     transferIndex <= 0)     break;    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))     transfer(tab, nt);   }   else if (U.compareAndSwapInt(this, SIZECTL, sc,           (rs << RESIZE_STAMP_SHIFT) + 2))    transfer(tab, null);   s = sumCount();  } }}

由于本身的博客百度没有收录,博客地 />






原文转载:http://www.shaoqun.com/a/521203.html

跨境电商:https://www.ikjzd.com/

grab:https://www.ikjzd.com/w/841

extra:https://www.ikjzd.com/w/1736


原文链id="concurrenthashmap详解">ConcurrentHashMap详解JDK7Segment在jdk8之前concurrentHashMap使用该对象进行分段加锁,降低了锁的粒度,使得并发效率提高,Segment本身也相当于一个HashMap,Segment包含一个HashEntry数组,数组中每个HashEntry既是一个键值对,又是一个链表的头
淘粉吧怎么返利:淘粉吧怎么返利
斑马物联网:斑马物联网
腾邦:腾邦
美国最新法律:各州及地方政府可对互联网零售商强征销售税!:美国最新法律:各州及地方政府可对互联网零售商强征销售税!
又一爆款陨落!房子烧了, 亚马逊召回50万件产品, 卖家面临被起诉!:又一爆款陨落!房子烧了, 亚马逊召回50万件产品, 卖家面临被起诉!

没有评论:

发表评论