2013年6月16日星期日

Molecular 'sieves' harness ultraviolet irradiation for greener power generation

Molecular 'sieves' harness ultraviolet irradiation for greener power generation

June 12, 2013 — New research shows that exposing polymer molecular sieve membranes to ultraviolet (UV) irradiation in the presence of oxygen produces highly permeable and selective membranes for more efficient molecular-level separation, an essential process in everything from water purification to controlling gas emissions.






Published in the journal Nature Communications, the study finds that short-wavelength UV exposure of the sponge-like polymer membranes in the presence of oxygen allows the formation of ozone within the polymer matrix. The ozone induces oxidation of the polymer and chops longer polymer chains into much shorter segments, increasing the density of its surface.

By controlling this 'densification', resulting in smaller cavities on the membrane surface, scientists have found they are able to create a greatly enhanced 'sieve' for molecular-level separation -- as these 'micro-cavities' improve the ability of the membrane to selectively separate, to a significant degree, molecules with various sizes , remaining highly permeable for small molecules while effectively blocking larger ones.

The research from the University of Cambridge's Cavendish Laboratory partly mirrors nature, as our planet's ozone layer is created from oxygen hit by ultraviolet light irradiated from the sun.

Researchers have now demonstrated that the 'selectivity' of these newly modified membranes could be enhanced to a remarkable level for practical applications, with the permeability potentially increasing between anywhere from a hundred to a thousand times greater than the current commercially-used polymer membranes.

Scientists believe such research is an important step towards more energy efficient and environmentally friendly gas-separation applications in major global energy processes -- ranging from purification of natural gases and hydrogen for sustainable energy production, the production of enriched oxygen from air for cleaner combustion of fossil fuels and more-efficient power generation, and the capture of carbon dioxide and other harmful greenhouse gases.

"Our discoveries lead to better understandings of physics of the novel materials, so we will be able to develop better membranes in the future" said Qilei Song, a researcher in Dr Easan Sivaniah's group and the paper's lead author.

In collaboration with groups at the Department of Materials Science and Metallurgy (Professor Tony Cheetham), University of Cambridge, and at the Chemical Engineering department of Qatar University (Prof. Shaheen Al-Muhtaseb), the researchers confirmed that the size and distribution of free volume accessible to gas molecules within these porous polymeric molecular sieves could be tuned by controlling the kinetics of the ultraviolet light-driven reactions.

Conventional separation technologies, such as cryogenic distillation and amine absorption, are significantly energy-intensive processes. Membrane separation technology is highly attractive to industry, as it has the potential to replace conventional technologies with higher energy efficiency and lower environmental impacts.

But gas separation performance of current commercially-available polymer membranes are subject to what scientists describe as "a poor trade-off" between low permeability levels and high degree of selective molecular separation. The next generation membranes -- such as polymers of intrinsic microporosity (PIMs) -- being studied at the Cavendish are based on tuning the pore size and interaction with specific molecules to achieve both high permeability and, critically, high selectivity.

Currently, these flat-sheet membranes show great separation performance and are mechanically robust for clean cylinder gases. "We are working on ways to further improve these membranes and our next step is to develop large scale and more practical industrial modules such as thin film composite membranes or hollow fibers with selective layer as thin as possible," said Dr Easan Sivaniah.

"We are also exploring many other applications of these fascinating polymer materials, such as liquid and vapour separation, water treatment by desalination, sensor devices and photolithography technology, and energy storage applications."



Welcome to SUV System Ltd!

SUV System Ltd is ISO 90012008 Certified electronics distributor with 10 years of experiences.

We have built up long term business relationship with about many companies which are stockers and authorized agents. we have a steady and reliable supply to meet customer's demands to the greatest extent .Confidently, we are able to lower your cost and support your business with our years of professional service.

SUV System Ltd is Electronic Components Distributor Supplies,Find Quality Electronic Components Supplies Products IC(Integrated Circuits),Connectors,Capacitor,Resistors,Diodes,Transistors,LED at Suvsystem.com. Sourcing Other Energy, Environment, Excess Inventory Products from Manufacturers and Suppliers at Suvsystem.com

Electronic Components distributor:http://www.suvsystem.com

Connectors Distributor:http://www.suvsystem.com/l/Connectors-1.html

IC Distributor:http://www.suvsystem.com/l/IC(Integrated-Circuits)-1.html

LED Distributor:http://www.suvsystem.com/l/LED-1.html

Capacitor Distributor:http://www.suvsystem.com/l/Capacitor-1.html

Transistor Distributor:http://www.suvsystem.com/l/Transistors-1.html

Resistor Distributor:http://www.suvsystem.com/l/Resistors-1.html

Diode Distributor:http://www.suvsystem.com/l/Diodes-1.html

SUV System Ltd insists on the managing faith ofsincereness,speciality,foresight, win-win,so we build up stable-relationship customers located all over the world, including the States, Europe, Argentina, UAE, Malaysia, Australia,and India etc

we are focus on the following fields,and hope we can help you.


C1206T919D1GAL7800 C1206T824J3RAL7800 C1206T824J3RAL C1206T685K4RCL C1206T683J5GAL C1206T680J5GAC7800 C1206T680J5GAC C1206T475M3RAC C1206T475K8RCC7800 C1206T475K8RAC C1206T475K4RAL C1206T475K4RAC C1206T475K3RCL C1206T475K3RAC C1206T475K3PAL C1206T475K3PAC C1206T474K3RAL7800 C1206T474K3RAC C1206T470J5GCL C1206T470J5GAL7800 C1206T470J5GAL C1206T455K3PAC C1206T395K4RAL C1206T334K5RAL C1206T333K1RAL C1206T330J5GAL C1206T272G2GAL C1206T272G1GAL C1206T272G1GAC C1206T226M9PAC C1206T225K5RCL C1206T225K4RCL C1206T225K4RAL C1206T225K4RAC C1206T225K3RCG C1206T225J4RAC C1206T224K5RCL C1206T223K1RCL7800 C1206T223K1RCL C1206T223K1RAL
http://www.suvsystem.com/a/2833.aspx

没有评论:

发表评论