2013年5月16日星期四

Brain rewires itself after damage or injury, life scientists discover

Brain rewires itself after damage or injury, life scientists discover

May 15, 2013 — When the brain's primary "learning center" is damaged, complex new neural circuits arise to compensate for the lost function, say life scientists from UCLA and Australia who have pinpointed the regions of the brain involved in creating those alternate pathways -- often far from the damaged site.






The research, conducted by UCLA's Michael Fanselow and Moriel Zelikowsky in collaboration with Bryce Vissel, a group leader of the neuroscience research program at Sydney's Garvan Institute of Medical Research, appears this week in the early online edition of the Proceedings of the National Academy of Sciences.

The researchers found that parts of the prefrontal cortex take over when the hippocampus, the brain's key center of learning and memory formation, is disabled. Their breakthrough discovery, the first demonstration of such neural-circuit plasticity, could potentially help scientists develop new treatments for Alzheimer's disease, stroke and other conditions involving damage to the brain.

For the study, Fanselow and Zelikowsky conducted laboratory experiments with rats showing that the rodents were able to learn new tasks even after damage to the hippocampus. While the rats needed more training than they would have normally, they nonetheless learned from their experiences -- a surprising finding.

"I expect that the brain probably has to be trained through experience," said Fanselow, a professor of psychology and member of the UCLA Brain Research Institute, who was the study's senior author. "In this case, we gave animals a problem to solve."

After discovering the rats could, in fact, learn to solve problems, Zelikowsky, a graduate student in Fanselow's laboratory, traveled to Australia, where she worked with Vissel to analyze the anatomy of the changes that had taken place in the rats' brains. Their analysis identified significant functional changes in two specific regions of the prefrontal cortex.

"Interestingly, previous studies had shown that these prefrontal cortex regions also light up in the brains of Alzheimer's patients, suggesting that similar compensatory circuits develop in people," Vissel said. "While it's probable that the brains of Alzheimer's sufferers are already compensating for damage, this discovery has significant potential for extending that compensation and improving the lives of many."

The hippocampus, a seahorse-shaped structure where memories are formed in the brain, plays critical roles in processing, storing and recalling information. The hippocampus is highly susceptible to damage through stroke or lack of oxygen and is critically inolved in Alzheimer's disease, Fanselow said.

"Until now, we've been trying to figure out how to stimulate repair within the hippocampus," he said. "Now we can see other structures stepping in and whole new brain circuits coming into being."

Zelikowsky said she found it interesting that sub-regions in the prefrontal cortex compensated in different ways, with one sub-region -- the infralimbic cortex -- silencing its activity and another sub-region -- the prelimbic cortex -- increasing its activity.

"If we're going to harness this kind of plasticity to help stroke victims or people with Alzheimer's," she said, "we first have to understand exactly how to differentially enhance and silence function, either behaviorally or pharmacologically. It's clearly important not to enhance all areas. The brain works by silencing and activating different populations of neurons. To form memories, you have to filter out what's important and what's not."

Complex behavior always involves multiple parts of the brain communicating with one another, with one region's message affecting how another region will respond, Fanselow noted. These molecular changes produce our memories, feelings and actions.

"The brain is heavily interconnected -- you can get from any neuron in the brain to any other neuron via about six synaptic connections," he said. "So there are many alternate pathways the brain can use, but it normally doesn't use them unless it's forced to. Once we understand how the brain makes these decisions, then we're in a position to encourage pathways to take over when they need to, especially in the case of brain damage.

"Behavior creates molecular changes in the brain; if we know the molecular changes we want to bring about, then we can try to facilitate those changes to occur through behavior and drug therapy," he added. I think that's the best alternative we have. Future treatments are not going to be all behavioral or all pharmacological, but a combination of both."

Fanselow and Vissel have worked closely over the last several years. For more information on Fanselow's research, visit the Fanselow Lab website. For more on the Garvan Institute of Medical Research, visit their website.

The research was funded by the National Institute of Mental Health (grant MH 62122), part of the National Institutes of Health, and by the National Science Foundation (EAPSI award 0914307 to Zelikowsky).



Welcome to SUV System Ltd!

SUV System Ltd is ISO 90012008 Certified electronics distributor with 10 years of experiences.

We have built up long term business relationship with about many companies which are stockers and authorized agents. we have a steady and reliable supply to meet customer's demands to the greatest extent .Confidently, we are able to lower your cost and support your business with our years of professional service.

SUV System Ltd is Electronic Components Distributor Supplies,Find Quality Electronic Components Supplies Products IC(Integrated Circuits),Connectors,Capacitor,Resistors,Diodes,Transistors,LED at Suvsystem.com. Sourcing Other Energy, Environment, Excess Inventory Products from Manufacturers and Suppliers at Suvsystem.com

Electronic Components distributor:http://www.suvsystem.com

Connectors Distributor:http://www.suvsystem.com/l/Connectors-1.html

IC Distributor:http://www.suvsystem.com/l/IC(Integrated-Circuits)-1.html

LED Distributor:http://www.suvsystem.com/l/LED-1.html

Capacitor Distributor:http://www.suvsystem.com/l/Capacitor-1.html

Transistor Distributor:http://www.suvsystem.com/l/Transistors-1.html

Resistor Distributor:http://www.suvsystem.com/l/Resistors-1.html

Diode Distributor:http://www.suvsystem.com/l/Diodes-1.html

SUV System Ltd insists on the managing faith ofsincereness,speciality,foresight, win-win,so we build up stable-relationship customers located all over the world, including the States, Europe, Argentina, UAE, Malaysia, Australia,and India etc

we are focus on the following fields,and hope we can help you.


DM74AS21MX DM74AS21M_Q DM74AS21M DM74AS1805WMX DM74AS1805N DM74AS1804WMX DM74AS1804N DM74AS169AN DM74AS169AMX DM74AS169AM DM74AS163N DM74AS163MX DM74AS163M DM74AS161N DM74AS161M DM74AS158N_Q DM74AS158N DM74AS158MX DM74AS158M_Q DM74AS158M DM74AS157SJX DM74AS157SJ DM74AS157N_Q DM74AS157N DM74AS157MX DM74AS157M_Q DM74AS157M DM74AS10N_Q DM74AS10N DM74AS10MX DM74AS10M_Q DM74AS10M DM74AS1034AN_Q DM74AS1034AN DM74AS30M DM74AS286N DM74AS286MX DM74AS286M DM74AS280N_Q DM74AS280N
http://www.suvsystem.com/a/837.aspx

没有评论:

发表评论